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FLAT TRANSLATIONAL SHELLS WITH A PURE-MOMENT
STRESSED-STRAINED STATE
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Consideration is given to the problem on determination of the shape of a shell with its median translational
surface in which a prescribed force field (external load) generates a pure-moment stressed-strained state.

Thin-walled, three-dimensional structural elements of small thickness (shells) are widely used in engineering
and construction, since, in using them, one can solve problems on reduction of the specific quantity of metal and ma-
terial of the main product with preservation of a high strength, reliability, and longevity. Therefore, improvement of
their analysis for strength, vibrations, and stability represents a topical problem of the modern mechanics of a de-
formed rigid body. The arising partial problems can arbitrarily be subdivided into primal problems and inverse prob-
lems. The first problems may include those of calculation of the stressed-strained state (SSS) of shells of prescribed
geometric shape and external load, whereas the second class of problems may include determination of the geometric
shape from prescribed SSS criteria and the law of external loading or straining. The condition of zero-moment (mem-
brane) straining of the shell or the condition of its pure-moment straining by a prescribed load may act as the latter.
An example of a zero-moment SSS is χ1 = χ2 = χ12 = 0 (absence of bending moments and torques) and that of a
pure-moment SSS is ε1 = ε2 = γ12 = 0 (absence of membrane forces in the shell). The focus of the present work is
the second of the inverse problems enumerated above; it is solved within the framework of the Kirchhoff–Love theory
of flat shells. Selection of this theory as the basic one is attributed to the simplicity of the basic hypotheses and equa-
tions, which reduce determination of the SSS of a shell to finding the strained state of its median surface (i.e., the
surface dividing the thickness h in two).

We consider flat shells of constant thickness, whose median surfaces are described by equations of the
form [1]

z = ϕ (α) + ψ (β) ,   α 2 [0, a] ,   β 2 [0, b] . (1)

We assume for ϕ(α) and ψ(β) that

A C 1 ,   B C 1 (2)

or

ϕ ′ (α)  << 1 ,   ψ ′ (β)  << 1 .

Then we have [1]

1
R1

 C − ϕ′′  (α) ,   1
R2

 C − ψ′′  (β) ,   1
R12

 = 0 . (3)
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It is necessary to determine the functions ϕ(α) and ψ(β) from the conditions that, in the shell, a prescribed
external load generates only moment stresses, i.e.,

T1 = T2 = S = 0 ,   T12 = 
H
R2

 ,   T21 = 
H
R1

 ; (4)

M1 = D (χ1 + µχ2) ,   M2 = D (χ2 + µχ1) ,   H = D (1 − µ) χ12 ,   D = 
Eh

3

12 (1 − µ2)
 . (5)

The resolving system of equations of the problem in question consists of the equilibrium equations, the equa-
tions of consistency of strains, and Hooke’s law, which, by virtue of (2) and (3), take the form [1]

∂
∂β

 




H

R1




 + 

Q1

R1
 + q1 = 0 ,   

∂
∂α

 




H

R2




 + 

Q2

R2
 + q2 = 0 ,   

∂Q1

∂α
 + 

∂Q2

∂β
 + q3 = 0 ; (6)

∂M1

∂α
 + 

∂H

∂β
 − Q1 = 0 ,   

∂M2

∂β
 + 

∂H

∂α
 − Q2 = 0 ,

∂χ1

∂β
 − 

∂χ12

∂α
 = 0 ,   

∂χ2

∂α
 − 

∂χ12

∂β
 = 0 ,   

χ1

R2
 + 

χ2
R1

 = 0 ;

(7)

χ1 = 
12

Eh
3 (M1 − µM2) ,   χ2 = 

12

Eh
3 (M2 − µM1) ,   χ12 = 

12 (1 + µ)

Eh
3  H . (8)

Eliminating Q1 and Q2 from (6), we rewrite the equilibrium equations:

1

R1
 




∂M1

∂α
 + 2 

∂H

∂β



 + q1 = 0 ,   

1
R2

 




∂M2

∂β
 + 2 

∂H

∂α



 + q2 = 0 ,

∂
∂α

 




∂M1

∂α
 + 

∂H

∂β



 + 

∂
∂β

 




∂M2

∂β
 + 

∂H

∂α



 + q3 = 0 . (9)

From (9) we have

2 
∂2

H

∂α∂β
 = q3 − 

∂
∂α

 (R1q1) − 
∂
∂β

 (R2q2) ,
(10)

whence we have

2H (α, β) = f (α) + g (β) + ∫ 
0

α

∫ 
0

β



q3 − 

∂
∂α

 (R1q1) − 
∂
∂β

 (R2q2)



 dαdβ ,

where f(α) = 2H(α, 0) − g(0) and g(β) = 2H(0, β) − f(0). Therefore, we have

f (α) + g (β) = 2H (α, 0) + 2H (0, β) − f (0) − g (0) = 2H (α, 0) + 2H (0, β) − 2H (0, 0) .

Then we obtain

566



2H (α, β) = 2H (α, 0) + 2H (0, β) − 2H (0, 0) + ∫ 
0

α

∫ 
0

β



q3 − 

∂
∂α

 (R1q1) − 
∂
∂β

 (R2q2)



 dαdβ . (11)

Here H(α, 0), H(0, β), and H(0, 0) are determined from the boundary conditions. Therefore, in what follows, H(α, β)
will be considered to be the known function of α 2 [0; a] and β 2 [0; b].

To find unknown M1 and M2 we use the first two of the equilibrium equations (9) and the equations of con-
sistency of strains, which will be rewritten as

∂M1

∂α
 = − R1q1 − 2 

∂H

∂β
 ,   

∂M2

∂β
 = − R2q2 − 2 

∂H

∂α
 ,

∂M1

∂β
 = (1 + µ) 

∂H

∂α
 + µ 

∂M2

∂β
 ,   

∂M2

∂α
 = (1 + µ) 

∂H

∂β
 + µ 

∂M1

∂α
 . (12)

We can transform system (12) as

∂M1

∂α
 = − R1q1 − 2 

∂H

∂β
 ,   

∂M2

∂β
 = − R2q2 − 2 

∂H

∂α
 ,

∂M1

∂β
 = (1 − µ) 

∂H

∂α
 − µR2q2 ,   

∂M2

∂α
 = (1 − µ) 

∂H

∂β
 − µR1q1 . (13)

We assume that we have the following equalities [2]:

− 
∂
∂β

 



R1q1 + 2 

∂H

∂β



 = 

∂
∂α

 



(1 − µ) 

∂H

∂α
 − µR2q2




 ,

− 
∂

∂α
 



R2q2 + 2 

∂H

∂α



 = 

∂
∂β

 



(1 − µ) 

∂H

∂β
 − µR1q1




 .

(14)

Then we obtain

M1 =  ∫ 
M0M

  



− 




R1q1 + 2 

∂H
∂β








 dα + 




(1 − µ) ∂H

∂α
 − µR2q2




 dβ ,

M2 =  ∫ 
M0M

  



(1 − µ) ∂H

∂β
 − µR1q1




 dα − 




R2q2 + 2 

∂H
∂α




 dβ .

(15)

The curvilinear integrals appearing in (15) are independent of the method of integration, since the integrands in them
are represented by the total differentials when (14) holds.

The integro-differential equation sought is obtained using the third equation of system (7); we pretransform
this equation, using (8):

ψ′′  (β) (M1 − µM2) + ϕ′′ (α) (M2 − µM1) = 0 . (16)

Substituting (15) into (16), we finally obtain

ψ′′  (β) 






   ∫ 
M0M

  



 − 




R1q1 + 2 

∂H
∂β








 dα + 




(1 − µ) ∂H

∂α
 − µR2q2




 dβ −

567



− µ  ∫ 
M0M

  



(1 − µ) 

∂H

∂β
 − µR1q1




 dα − 




R2q2 + 2 

∂H

∂α



 dβ







 +

+ ϕ′′  (α) 






   ∫ 
M0M

  



(1 − µ) 

∂H

∂β
 − µR1q1




 dα − 




R2q2 + 2 

∂H
∂α




 dβ −

− µ  ∫ 
M0M

  



 − 




R1q1 + 2 

∂H
∂β








 dα + 




(1 − µ) 

∂H

∂α
 − µR2q2




 dβ







 = 0 . (17)

The function H = H(α, β) involved in (17) is determined by formula (11). Equalities (14) should be considered as the
conditions of correct solvability of Eq. (17) and hence the entire problem formulated.

We consider an example. Let

q1 = q2 = 0 ,   q3 = const ;   f (α) = 2H (α, 0) ,   g (β) = 2H (0, β) . (18)

In this case we have

2H (α, β) = f (α) + g (β) + q3αβ ,      2 
∂H

∂α
 = f ′ (α) + q3β ,   2 

∂H

∂β
 = g′ (β) + q3α ,

2 
∂2

H

∂α2  = f ′′  (α) ,   2 
∂2

H

∂β2  = g′′  (β) ,    
1

R1

 C − ϕ′′ (α) ,   1

R2

 C − ψ′′  (β) . (19)

From (14) we have

− 2 
∂2

H

∂β2
 = (1 − µ) 

∂2
H

∂α2
 ,   − 2 

∂2
H

∂α2
 = (1 − µ) 

∂2
H

∂β2
 . (20)

Into (20) we substitute

− 2 f ′′  (α) = (1 − µ) g′′  (β) ,   − 2g′′  (β) = (1 − µ) f ′′ (α)

or

2 f ′′  (α) + (1 − µ) g′′  (β) = 0 ,   2g′′  (β) + (1 − µ) f ′′ (α) = 0 . (21)

Expression (21) is a homogeneous system of algebraic equations for f ′′(α) and g′′(β). Its determinant is equal to

∆ = 


2
1 − µ     1 − µ

2



 = 4 − (1 − µ)2

 = (1 + µ) (3 − µ) ≠ 0 ,   since  µ 2 

0; 

1
2




 .

Therefore, we have

f ′′  (α) = 0   and   g′′ (β) = 0 ,

consequently,

f ′ (α) = c1 ,   f (α) = c1α + c2 ,   g′ (β) = c3 ,   g (β) = c3β + c4 . (22)

Whence, by virtue of (18), (21), and (17), we obtain
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2H (α, β) = q3αβ + c1α + c3β + c . (23)

Expressions (15), (18), and (22) yield

M1 =  ∫ 
M0M

  



− 2 

∂H

∂β
 dα + (1 − µ) 

∂H

∂α
 dβ



 =  ∫ 

M0M

 − (q3α + c3) dα + 




1 − µ
2




 (q3β + c1) dβ =

= ∫ 
0

α

− (q3α + c3) dα + ∫ 
0

β




1 − µ
2




 (q3β + c1) dβ = 

− 2α2
 + (1 − µ) β2

4
 q3 − c3α + 

1 − µ
2

 c1β , (24)

M2 =  ∫ 
M0M

  



(1 − µ) 

∂H

∂β
 dα − 2 

∂H

∂α
 dβ




 =  ∫ 

M0M

  




1 − µ
2




 (q3α + c3) dα − (q3β + c1) dβ =

= ∫ 
0

α




1 − µ
2




 (q3α + c3) dα + ∫ 

0

β

− (q3β + c1) dβ = 
− 2β2

 + (1 − µ) α2

4
 q3 − c1β + 





1 − µ
2




 c3α . (25)

Substituting (24) and (25) into (16), we obtain

ψ′′  (β) 



− 2α2

 + (1 − µ) β2

4
 q3 − c3α + 

1 − µ
2

 c1β − µ 



− 2β2

 + (1 − µ) α2

4
 q3 − c1β + 

1 − µ
2

 c3α







 +

+ ϕ′′  (α) 



− 2β2

 + (1 − µ) α2

4
 q3 − c1β + 

1 − µ
2

 c3α − µ 



− 2α2

 + (1 − µ) β2

4
 q3 − c3α + 

1 − µ
2

 c1β







 = 0 . (26)

To determine the sought surface (1) we first set α = 0 and β ≠ 0 in (26) and then α ≠ 0 and β = 0. Then we
obtain

ψ′′  (β) 


1 − µ
4

 β2
q3 + 

1 − µ
2

 c1β + µ 


1
2

 β2
q3 + c1β








 −

− ϕ′′  (0) 

1
2

 β2
q3 + c1β + µ 





1 − µ
4

 β2
q3 + 

1 − µ
2

 c1β






 = 0 ,

ϕ′′  (α) 


1 − µ
4

 α2
q3 + 

1 − µ
2

 c3α + µ 


1
2

 α2
q3 + c3α








 −

− ψ′′  (0) 

1
2

 α2
q3 + c3α + µ 





1 − µ
4

 α2
q3 + 

1 − µ
2

 c3α






 = 0 , (27)

whence we have

ψ′′  (β) 


1 + µ
4

 β2
q3 + 

1 + µ
2

 c1β



 = ϕ′′  (0) 





2 + µ (1 − µ)
4

 β2
q3 + 

2 + µ (1 − µ)
2

 c1β



 B

B ϕ′′  (0) 

− 

(µ + 1) (µ − 2)
4

 (β2
q3 + 2c1β)




 ,

ϕ′′  (β) 


1 + µ
4

 α2
q3 + 

1 + µ
2

 c3α



 = ψ′′  (0) 



2 + µ (1 − µ)
4

 α2
q3 + 

2 + µ (1 − µ)
2

 c3α



 B

569



B ψ′′  (0) 

− 

(µ + 1) (µ − 2)
4

 (α2
q3 + 2c3α)





or

ψ′′  (β) = (2 − µ) ϕ′′  (0) ,   ϕ′′  (α) = (2 − µ) ψ′′ (0) . (28)

Consequently,

ψ (β) = 
(2 − µ)

2
 β2ϕ′′  (0) + A1β + A2 ,   ϕ (α) = 

2 − µ
2

 α2ψ′′  (0) + B1α + B2 , (29)

whence we find ψ(0) and ϕ(0):

ψ (0) = A2 ,   ϕ (0) = B2 ;   ψ′ (0) = A1 ,   ϕ′ (0) = B1 .

Therefore, we obtain

ψ (β) = 




(2 − µ)
2

 β2
 + 1




 A2 + A1β ,   ϕ (α) = 





2 − µ
2

 α2
 + 1




 B2 + B1α , (30)

where Ai and Bi (i = 1 and 2) are the integration constants. The median surface sought is described by the equation

z = 




(2 − µ)
2

 β2
 + 1




 A2 + A1β + 





2 − µ
2

 α2
 + 1




 B2 + B1α . (31)

In deriving formula (31), it has been assumed that

1 + µ
4

 (α2
q3 + 2c3α) ≠ 0 ,   

1 + µ
4

 (β2
q3 + 2c1β) ≠ 0 ,

ò. å.   α ≠ − 
2c3

q3
 ,   β ≠ 0 ;   α ≠ 0 ,   β ≠ − 

2c1

q1
 . (32)

NOTATION

A and B, coefficients of the first quadratic form; E, Young modulus; h, shell thickness; 1/R1, 1/R2, and
1/R12, curvatures and torsion of the median surface; qi(α, β), components of the external surface load, i = 1, 3

___
; µ,

Poisson coefficient.
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