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PROCESSES UNDER THE STRESSED-STRAINED STATE OF MEDIA

FLAT TRANSLATIONAL SHELLS WITH A PURE-MOMENT
STRESSED-STRAINED STATE

T. M. Martynenko UDC 539.3:531.2.001:621.81

Consideration is given to the problem on determination of the shape of a shell with its median trandational
surface in which a prescribed force field (external load) generates a pure-moment stressed-strained state.

Thin-walled, three-dimensional structural elements of small thickness (shells) are widely used in engineering
and construction, since, in using them, one can solve problems on reduction of the specific quantity of metal and ma-
terial of the main product with preservation of a high strength, reliability, and longevity. Therefore, improvement of
their analysis for strength, vibrations, and stability represents a topical problem of the modern mechanics of a de-
formed rigid body. The arising partial problems can arbitrarily be subdivided into prima problems and inverse prob-
lems. The first problems may include those of calculation of the stressed-strained state (SSS) of shells of prescribed
geometric shape and external load, whereas the second class of problems may include determination of the geometric
shape from prescribed SSS criteria and the law of external loading or straining. The condition of zero-moment (mem-
brane) straining of the shell or the condition of its pure-moment straining by a prescribed load may act as the latter.
An example of a zero-moment SSS is X1 = X2 = X12 = 0 (absence of bending moments and torques) and that of a
pure-moment SSS is €1 = & = y2 = 0 (absence of membrane forces in the shell). The focus of the present work is
the second of the inverse problems enumerated above; it is solved within the framework of the Kirchhoff-Love theory
of flat shells. Selection of this theory as the basic one is attributed to the simplicity of the basic hypotheses and equa-
tions, which reduce determination of the SSS of a shell to finding the strained state of its median surface (i.e., the
surface dividing the thickness h in two).

We consider flat shells of constant thickness, whose median surfaces are described by equations of the
form [1]

z=¢ () +y @), acoal, Be[0b]. @)
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It is necessary to determine the functions ¢(a) and Y(B) from the conditions that, in the shell, a prescribed
external load generates only moment stresses, i.e.,
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The resolving system of eguations of the problem in question consists of the equilibrium equations, the equa-
tions of consistency of strains, and Hooke's law, which, by virtue of (2) and (3), take the form [1]
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Eliminating Q; and Q» from (6), we rewrite the equilibrium equations:
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From (9) we have
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where f(a) = 2H(a, 0) —g(0) and g(B) = 2H(0, B) — f(0). Therefore, we have

f(a) +g(B)=2H (a,0) +2H (0,B) - f(0) —g (0) =2H (a, 0) + 2H (0, B) - 2H (0, 0) .

Then we obtain
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Here H(a, 0), H(O, B), and H(O, 0) are determined from the boundary conditions. Therefore, in what follows, H(a, B)
will be considered to be the known function of a € [0; a] and B € [0; b].

To find unknown M; and M, we use the first two of the equilibrium eguations (9) and the eguations of con-
sistency of strains, which will be rewritten as
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We can transform system (12) as
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We assume that we have the following equalities [2]:
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Then we obtain
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The curvilinear integrals appearing in (15) are independent of the method of integration, since the integrands in them

are represented by the total differentials when (14) holds.

The integro-differential equation sought is obtained using the third equation of system (7); we pretransform
this equation, using (8):
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Substituting (15) into (16), we finally obtain
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The function H = H(a, B) involved in (17) is determined by formula (11). Equalities (14) should be considered as the
conditions of correct solvability of Eq. (17) and hence the entire problem formulated.
We consider an example. Let
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Into (20) we substitute
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Expression (21) is a homogeneous system of algebraic equations for f"(a) and g'(B). Its determinant is equal to
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Whence, by virtue of (18), (21), and (17), we obtain
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Expressions (15), (18), and (22) yield
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Substituting (24) and (25) into (16), we obtain
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To determine the sought surface (1) we first set @ = 0 and B#0 in (26) and then a #0 and B = 0. Then we

obtain
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Consequently,
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whence we find @(0) and ¢(0):
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Therefore, we obtain
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where Aj and B; (i = 1 and 2) are the integration constants. The median surface sought is described by the eguation
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In deriving formula (31), it has been assumed that
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NOTATION

A and B, coefficients of the first quadratic form; E, Young modulus; h, shell thickness, 1/Ry, 1/Rp, and
1/Rqo, curvatures and torsion of the median surface; gj(a, B), components of the external surface load, i = 1, 3; |,
Poisson coefficient.
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